
TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	1	of	21	

		

	1	

	2	

Text	Recognition	Algorithm	Independent	3	

Test	(TRAIT)	4	

	5	

An	Evaluation	Activity	under	the	DHS	Science	&	Technology	6	

Child	Exploitation	Image	Analytics	Program	(CHEXIA)	7	
	8	

	9	

	10	

	11	

Concept,	Evaluation	Plan	and	API	12	

Version	0.7,	November	17,	2015	13	

	14	

Patrick	Grother,	Mei	Ngan,	Afzal	Godil	15	

Contact	via	trait2016@nist.gov	
	
	
	
	

	
	
	
	
	

	
	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	2	of	21	

		

Provisional	Timeline	of	the	TRAIT	2016	Evaluation	16	
Phase	0	
API	Development	

2015-10-05	 Draft	evaluation	plan	
2015-11-15	 Final	evaluation	plan	

Phase	1	
	

2015-12-01	 Participation	starts:		Algorithms	may	be	sent	to	NIST	
2016-02-08	 Last	day	for	submission	of	algorithms	to	Phase	1	
2016-03-07	 Interim	results	released	to	Phase	1	participants	

Phase	2	
	

2016-06-12	 Last	day	for	submission	of	algorithms	to	Phase	2	
2016-07-12	 Interim	results	released	to	Phase	2	participants	

Phase	3	
	

2016-10-19	 Last	day	for	submission	of	algorithms	to	Phase	3	
2016-Q4	 Release	of	final	public	report	

	17	
	18	

Updates	since	the	last	version	are	highlighted	in	cyan.	19	
	 	20	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	3	of	21	

		

Table	of	Contents	21	
1.	 TRAIT	...	5	22	

1.1.	 Scope	..	5	23	
1.2.	 Audience	..	5	24	
1.3.	 Market	drivers	..	6	25	
1.4.	 Test	data	..	7	26	
1.5.	 Offline	testing	..	7	27	
1.6.	 Phased	testing	..	7	28	
1.7.	 Interim	reports	...	7	29	
1.8.	 Final	reports	...	7	30	
1.9.	 Application	scenarios	...	8	31	
1.10.	 Options	for	participation	..	8	32	
1.11.	 Number	and	schedule	of	submissions	...	8	33	
1.12.	 Core	accuracy	metrics	..	9	34	
1.13.	 Reporting	computational	efficiency	...	9	35	
1.14.	 Hardware	specification	..	9	36	
1.15.	 Operating	system,	compilation,	and	linking	environment	...	9	37	
1.16.	 Software	and	Documentation	..	10	38	
1.17.	 Runtime	behavior	...	11	39	
1.18.	 Threaded	computations	...	11	40	
1.19.	 Time	limits	..	11	41	

2.	 Data	structures	supporting	the	API	...	12	42	
2.1.	 Namespace	...	12	43	
2.2.	 Overview	..	12	44	
2.3.	 Requirement	..	12	45	
2.4.	 File	formats	and	data	structures	..	12	46	

3.	 API	Specification	..	14	47	
3.1.	 Image-to-location	...	14	48	
3.2.	 Image-to-text	with	provided	location	information	..	16	49	
3.3.	 Image-to-text-and-location	..	18	50	

Annex	A	Submission	of	Implementations	to	the	TRAIT	2016	...	20	51	
A.1	 Submission	of	implementations	to	NIST	...	20	52	
A.2	 How	to	participate	..	20	53	
A.3	 Implementation	validation	...	21	54	

	55	
List	of	Figures	56	
Figure	1	–	Example	of	inputs	and	outputs	..	5	57	
Figure	2	–	Example	of	input	with	provided	location	information	and	outputs	...	6	58	
	59	
List	of	Tables	60	
Table	1	–	Subtests	supported	under	the	TRAIT	2016	activity	...	8	61	
Table	2	–	TRAIT	2016	classes	of	participation	...	8	62	
Table	3	–	Cumulative	total	number	of	algorithms,	by	class	..	8	63	
Table	4	–	Implementation	library	filename	convention	...	10	64	
Table	5	–	Struct	representing	a	single	image	..	12	65	
Table	7	–	Location	Types	...	12	66	
Table	8	–	Data	structure	for	location	information	in	an	image	..	13	67	
Table	9	–	Enumeration	of	return	codes	for	API	function	calls	..	13	68	
Table	10	–	ReturnStatus	structure	..	13	69	
Table	11	–	SDK	initialization	..	15	70	
Table	12	–	GPU	index	specification	...	15	71	
Table	13	–	Text	detection	...	15	72	
Table	14	–	SDK	initialization	..	17	73	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	4	of	21	

		

Table	15	–	GPU	index	specification	...	17	74	
Table	16	–	Text	recognition	..	17	75	
Table	17	–	SDK	initialization	..	19	76	
Table	18	–	GPU	index	specification	...	19	77	
Table	19	–	Text	processing	..	19	78	
	79	

	 	80	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	5	of	21	

		

1. TRAIT		81	

1.1. Scope	82	

This	document	establishes	a	concept	of	operations	and	C++	API	for	evaluation	of	text-in-image	detection	and	recognition	83	
algorithms	submitted	to	NIST's	TRAIT	program.		See	http://www.nist.gov/itl/iad/ig/trait-2016.cfm	for	latest	84	
documentation.	85	

TRAIT	proceeds	as	follows.	Algorithm	developers	send	compiled	C++	libraries	to	NIST.		NIST	executes	those	algorithms	on	86	
sequestered	imagery	that	has	been	made	available	to	NIST	by,	for	example,	other	US	Government	agencies.		87	

1.2. Audience	88	

This	document	is	aimed	at	universities,	commercial	entities	and	other	research	organizations	possessing	a	capability	to	89	
detect	and	recognize	unconstrained	text	in	still	images.		There	is	no	requirement	for	real-time	or	streaming-mode	90	
processing.		An	example	image	appears	in	Figure	1.		It	is	intended	only	as	an	example	of	out-of-plane	text,	not	as	some	91	
representation	of	widely	varying	test	data.	92	

	93	

Figure	1	–	Example	of	inputs	and	outputs	94	

A	simple	example	of	out-of-plane	text.	 Input	image	showing	geometric	
markup	in	yellow,	and	missed	
detection	in	red.	

Possible	Output	text	and	(dummy,	
nominal)	coordinates	

	 	

First	string	at	very	top	of	page	is	missed	

	

Text	Recognition	Algorithm	
Independent		

(x,y)	=	
(10,10),(10,100),(20,100),(20,10),(10,10)	

	

Evaluation	(TRAIT)	

(x,y)	=	
(30,30),(30,60),(40,60),(30,40),(30,30)	

	

	95	

	96	

	97	

	98	

	99	

	100	

	101	

	102	

	103	

	104	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	6	of	21	

		

	105	

Figure	2	–	Example	of	input	with	provided	location	information	and	outputs	106	

A	simple	example	of	out-of-plane	text	with	provided	
location	information	marked	by	the	yellow	lines.	

NOTE:		When	location	information	is	provided	to	a	text	
recognition	algorithm,	we	provide	a	simple	line	instead	
of	a	polygon.		The	reason	for	this	is	that	our	ground	
truthing	process	put	emphasis	on	maximizing	the	
number	of	images	i.e.	high	speed,	high	volume.	This	
meant	that	drawing	bounding	box	polygons,	which	is	
slow,	was	deprecated	in	favor	of	drawing	lines.	
Implementations	that	require	polygons	for	recognition	
will	have	to	estimate	that	information	starting	from	the	
provided	line.		

Possible	Output	text	corresponding	
to	provided	locations	

	

	

IN	CASE	OF	FIRE	

DO	NOT	USE	

ELEVATOR	

USE	EXIT	STAIRS	

	107	

Organizations	will	need	to	implement	the	API	defined	in	this	document.		Participation	is	open	worldwide.	There	is	no	108	
charge	for	participation.		While	NIST	intends	to	evaluate	technologies	that	could	be	readily	made	operational,	the	test	is	109	
also	open	to	experimental,	prototype	and	other	technologies.	110	

NIST	is	particularly	interested	to	evaluate	prototypes	that	have	proven	useful	in	prior	evaluations	organized	underneath	111	
the	ICDAR	conferences	(http://2015.icdar.org/program/competitions/)	particularly	the	Robust	Reading	efforts	112	
(http://rrc.cvc.uab.es/)	113	

1.3. Market	drivers	114	

This	test	is	intended	to	support	a	plural	marketplace	of	text	recognition	systems.		Our	primary	driver	is	to	support	forensic	115	
investigations	of	digital	media.	Specifically,	to	allow	linking	of	child	exploitation	events	that	occur	in	a	common	location,	116	
or	that	share	other	textual	clues.		117	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	7	of	21	

		

1.4. Test	data	118	

NIST	will	run	submitted	algorithms	on	several	sequestered	datasets	available	to	NIST.	119	
	120	
The	primary	dataset	is	an	operational	child	exploitation	collection	containing	illicit	pornographic	images.	The	images	are	121	
present	on	digital	media	seized	in	criminal	investigations.		The	files	include	children	who	range	in	age	from	infant	through	122	
adolescent.		Their	faces	are	the	subject	of	a	separate	face	recognition	evaluation	and	development	effort	(CHEXIA-FACE	123	
2016).		Many	of	the	images	contain	geometrically	unconstrained	text.		This	text	is	human-legible	and	sometimes	has	124	
investigational	value.		Such	text	is	visible	on	certificates,	posters,	logos,	uniforms,	sports	apparel,	computer	screens,	125	
business	cards,	newspapers,	books	lying	on	tables,	cigarette	packets	and	a	long	list	of	more	rare	objects.		There	will	also	126	
be	instances	where	watermarks	or	logos	were	post-processed	into	the	image.	127	

The	text	is	most	commonly	in	English	with	French,	Spanish,	German	and	Cyrillic	present	in	significant	quantity.		We	do	not	128	
intend	to	test	non-Roman	alphabets.	129	

These	images	are	of	interest	to	NIST's	partner	law	enforcement	agencies	that	seek	to	employ	text	recognition	in	130	
investigating	this	area	of	serious	crime.		The	primary	applications	are	identification	of	previously	known	victims	and	131	
suspects,	as	well	as	detection	of	new	victims	and	suspects.	The	presence	of	text	may	allow	a	location	to	be	identified	or	to	132	
generate	leads.	133	

1.5. Offline	testing	134	

TRAIT	is	intended	to	mimic	operational	reality.		As	an	offline	test	intended	to	assess	the	core	algorithmic	capability	of	text	135	
detection	and	recognition	algorithms,	it	does	not	extend	to	real-time	transcription	of	live	image	sources.		Offline	testing	is	136	
attractive	because	it	allows	uniform,	fair,	repeatable,	and	efficient	evaluation	of	the	underlying	technologies.		Testing	of	137	
implementations	under	a	fixed	API	allows	for	a	detailed	set	of	performance	related	parameters	to	be	measured.		The	138	
algorithms	will	be	run	only	on	NIST	machines	by	NIST	employees.	139	

1.6. Phased	testing	140	

To	support	development,	TRAIT	will	be	conducted	in	three	phases.	In	each	phase,	NIST	will	evaluate	implementations	on	a	141	
first-come-first-served	basis	and	will	return	results	to	providers	as	expeditiously	as	possible.	The	final	phase	will	result	in	142	
public	reports.		Providers	may	submit	revised	SDKs	to	NIST	only	after	NIST	provides	results	for	the	prior	SDK	and	invites	143	
further	submission.		The	frequency	with	which	a	provider	may	submit	SDKs	to	NIST	will	depend	on	the	times	needed	for	144	
developer	preparation,	transmission	to	NIST,	validation,	execution	and	scoring	at	NIST,	and	developer	review	and	decision	145	
processes.	146	

For	the	schedule	and	number	of	SDKs	of	each	class	that	may	be	submitted,	see	sections	1.10	and	1.11.			147	

1.7. Interim	reports	148	

The	performance	of	each	SDK	will	be	reported	in	a	"score-card".		This	will	be	provided	to	the	participant	and	not	publicly.		149	
The	feedback	is	intended	to	facilitate	development.		Score	cards	will:	be	machine	generated	(i.e.	scripted);	be	provided	to	150	
participants	with	identification	of	their	implementation;	include	timing,	accuracy	and	other	performance	results;	include	151	
results	from	other	implementations,	but	will	not	identify	the	other	providers;	be	expanded	and	modified	as	revised	152	
implementations	are	tested,	and	as	analyses	are	implemented;	be	produced	independently	of	the	status	of	other	153	
providers’	implementations;	be	regenerated	on-the-fly,	usually	whenever	any	implementation	completes	testing,	or	when	154	
new	analysis	is	added.	155	

NIST	does	not	intend	to	release	these	test	reports	publicly.		NIST	may	release	such	information	to	the	U.S.	Government	156	
test	sponsors;	NIST	will	request	that	agencies	not	release	this	content.	157	

1.8. Final	reports	158	

NIST	will	publish	one	or	more	final	public	reports.		NIST	may	also	publish:	additional	supplementary	reports	(typically	as	159	
numbered	NIST	Interagency	Reports);	in	other	academic	journals;	in	conferences	and	workshops	(typically	PowerPoint).	160	

Our	intention	is	that	the	final	test	reports	will	publish	results	for	the	best-performing	implementation	from	each	161	
participant.		Because	“best”	is	ill	defined	(accuracy	vs.	processing	time,	for	example),	the	published	reports	may	include	162	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	8	of	21	

		

results	for	other	implementations.		The	intention	is	to	report	results	for	the	most	capable	implementations	(see	section	163	
1.12,	on	metrics).		Other	results	may	be	included	(e.g.	in	appendices)	to	show,	for	example,	examples	of	progress	or	164	
tradeoffs.		IMPORTANT:	Results	will	be	attributed	to	the	providers.	165	

1.9. Application	scenarios	166	

The	test	will	include	detection	and	recognition	tasks	for	still	images.		As	described	in	Table	1,	the	test	is	intended	to	167	
support	operations	in	which	an	automated	text	recognition	engine	yields	text	that	can	be	indexed	and	retrieved	using	168	
mainline	text	retrieval	engines.	169	

Table	1	–	Subtests	supported	under	the	TRAIT	2016	activity	170	

#	 	 A	 B	 C	
1.	 Aspect	 Image-to-location		 Image-to-text	with	provided	

location	information		
Image-to-text-and-location	

2.	 Languages	 Mostly	English.	Some	French,	Spanish	and	German.	While	some	Cyrillic	and	Chinese	appear	also,	evaluation	will	be	
confined	to	English	roman	alphabets	only.	

3.	 Input	 Image(s)	 Image(s)	and	location(s)	of	text	 Image(s)	
4.	 Output	 Given	an	input	image,	output	

detected	locations	of	text.		This	does	
not	require	the	algorithm(s)	to	
produce	strings	of	text.	

Given	an	input	image	and	
location(s)	of	text	in	the	image,	
output	strings	of	text.	

Given	an	input	image,	output	strings	of	
text	along	with	their	corresponding	
locations	in	the	image.		

	171	

NOTE	1:	The	vast	majority	of	images	are	color.		The	API	supports	both	color	and	greyscale	images.	172	

NOTE	2:	For	the	operational	datasets,	it	is	not	known	what	processing	was	applied	to	the	images	before	they	were	173	
archived.		So,	for	example,	we	do	not	know	whether	gamma	correction	was	applied.		NIST	considers	that	best	practice,	174	
standards	and	operational	activity	in	the	area	of	image	preparation	remains	weak.	175	

1.10. Options	for	participation	176	

The	following	rules	apply:	177	

― A	participant	must	properly	follow,	complete	and	submit	the	TRAIT	2016	Participation	Application	(see	Annex	A).		This	178	
must	be	done	once,	not	before	December	1,	2015.		It	is	not	necessary	to	do	this	for	each	submitted	SDK.	179	

― Participants	may	submit	class	C	algorithms	only	if	at	least	1	class	B	algorithm	is	also	submitted.	180	

― All	submissions	shall	implement	exactly	one	of	the	functionalities	defined	in	Table	2.		A	library	shall	not	implement	181	
two	or	more	classes.	182	

Table	2	–	TRAIT	2016	classes	of	participation	183	

Function	 Image-to-location		 Image-to-text	with	
provided	location	

information		

Image-to-text-and-
location	

Class	label	 A	 B	 C	
Must	also	submit	to	class	 	 	 B	
API	requirements	 3.1	 3.2	 3.3	

1.11. Number	and	schedule	of	submissions		184	

The	test	is	conducted	in	three	phases,	separated	by	a	few	months.		The	maximum	total	(i.e.	cumulative)	number	of	185	
submissions	is	regulated	in	Table	3.	186	

Table	3	–	Cumulative	total	number	of	algorithms,	by	class	187	

#	 Phase	1	 Total	over	Phases	1	+	2	 Total	over	Phases	1	+	2	+	3	
Class	A:	Image-to-location	 2	 4	 6	
Class	B:	Image-to-text	with	provided	location	information	 2	 4	 6	
Class	C:	Image-to-text-and-location	 2	 4	 6	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	9	of	21	

		

The	numbers	above	may	be	increased	as	resources	allow.	188	

NIST	cannot	conduct	surveys	over	runtime	parameters.	189	

1.12. Core	accuracy	metrics	190	

Recognition:	The	evaluation	will	be	performed	on	the	text	results	provided	by	each	system.		We	intend	to	state	text	191	
recognition	accuracy	with	at	least	an	edit	distance	such	as	the	Word	Error	Rate	(WER)	[1.12a]	between	the	reference	text	192	
and	text	provided	by	the	system	for	each	line.	WER	is	calculated	with	the	edit	distance	with	equal	cost	of	deletions,	193	
substitutions,	and	insertions	and	finally	normalize	the	edit	distance	by	the	number	of	characters	in	the	ground	truth	194	
words.		195	

[1.12a]	J.	Fiscus,	J.	Ajot,	N.	Radde,	and	C.	Laprun,	Multiple	Dimension	Levenshtein	Edit	Distance	Calculations	for	Evaluating	196	
Automatic	Speech	Recognition	Systems	During	Simultaneous	Speech,	Proceedings	of	LREC,	2006.	197	
http://www.itl.nist.gov/iad/mig/publications/storage_paper/lrec06_v0_7.pdf		198	

Detection:	The	text	detection	task	will	be	evaluated,	somewhat	similar	to	prior	open	evaluations	[1.12b].	However,	in	our	199	
case	the	ground	truth	text,	is	defined	by	line	and	curve	segments	instead	of	bounding	boxes.	Hence	our	methodology	will	200	
use	a	simple	matching	distance	approach	between	lines	and	curves	as	the	criteria.	201	

[1.12b]	C.	Wolf	and	J.-M.	Jolion.	Object	count/Area	Graphs	for	the	Evaluation	of	Object	Detection	and	Segmentation	202	
Algorithms,	International	Journal	on	Document	Analysis	and	Recognition,	8(4):280-296,	2006.	203	
http://liris.cnrs.fr/christian.wolf/software/deteval/index.html	204	

1.13. Reporting	computational	efficiency	205	

NIST	will	also	report	timing	statistics	for	all	core	functions	of	the	submitted	SDK	implementations.		All	timing	tests	will	be	206	
executed	on	unloaded	machines	running	a	single	process.	207	

1.14. Hardware	specification	208	

NIST	intends	to	execute	the	software	on	Dual	Intel	Xeon	E5-2695	3.3	GHz	CPUs	(14	cores	each;	56	logical	CPUs	total)	with	209	
Dual	NVIDIA	Tesla	K40	Graphics	Processing	Units	(GPUs).		NIST	will	respond	to	prospective	participants'	questions	on	the	210	
hardware	by	amending	this	section.	211	

1.15. Operating	system,	compilation,	and	linking	environment	212	

The	operating	system	that	the	submitted	implementations	shall	run	on	will	be	released	as	a	downloadable	file	accessible	213	
from	http://nigos.nist.gov:8080/evaluations/	which	is	the	64-bit	version	of	CentOS	7	running	Linux	kernel	3.10.0.	214	

For	this	test,	Windows	machines	will	not	be	used.	Windows-compiled	libraries	are	not	permitted.		All	software	must	run	215	
under	Linux.	216	

NIST	will	link	the	provided	library	file(s)	to	our	C++	language	test	drivers.		Participants	are	required	to	provide	their	library	217	
in	a	format	that	is	linkable	using	the	C++11	compiler,	g++	version	4.8.3.			218	

A	typical	link	line	might	be	219	

g++	-std=c++11	-I.	-Wall	-m64	-o	trait16test		trait16test.cpp		-L.		–ltrait2016_Enron_A_07		220	

The	Standard	C++	library	should	be	used	for	development.		The	prototypes	from	this	document	will	be	written	to	a	file	221	
"trait2016.h"	which	will	be	included	via		222	

#include	<trait2016.h>	

The	header	and	source	files	will	be	made	available	to	implementers	at	http://nigos.nist.gov:8080/trait2016.		223	

NIST	will	handle	all	input	of	images	via	the	JPEG	and	PNG	libraries,	sourced,	respectively	from	http://www.ijg.org/	and	see	224	
http://libpng.org.	225	

All	compilation	and	testing	will	be	performed	on	x86	platforms.		Thus,	participants	are	strongly	advised	to	verify	library-226	
level	compatibility	with	g++	(on	an	equivalent	platform)	prior	to	submitting	their	software	to	NIST	to	avoid	linkage	227	
problems	later	on	(e.g.,	symbol	name	and	calling	convention	mismatches,	incorrect	binary	file	formats,	etc.).	228	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	10	of	21	
	

Dependencies	on	external	dynamic/shared	libraries	such	as	compiler-specific	development	environment	libraries	are	229	
discouraged.		If	absolutely	necessary,	external	libraries	must	be	provided	to	NIST	upon	prior	approval	by	the	Test	Liaison.	230	
Libraries	to	access	the	GPU	must	be	provided	to	NIST	as	a	part	of	the	algorithm	submission	package.	231	

1.16. Software	and	Documentation	232	

1.16.1. SDK	Library	and	Platform	Requirements	233	

Participants	shall	provide	NIST	with	binary	code	only	(i.e.,	no	source	code).		Header	files	(“.h”)	are	allowed,	but	these	shall	234	
not	contain	intellectual	property	of	the	company	nor	any	material	that	is	otherwise	proprietary.		The	SDK	should	be	235	
submitted	in	the	form	of	a	dynamically	linked	library	file.		A	separate	library	file	shall	be	submitted	for	each	class	of	236	
participation	(i.e.,	CLASS_A,	CLASS_B,	CLASS_C).	237	

The	core	library	shall	be	named	according	to	Table	4.		Additional	shared	object	library	files	may	be	submitted	that	support	238	
this	“core”	library	file	(i.e.	the	“core”	library	file	may	have	dependencies	implemented	in	these	other	libraries).	239	

Intel	Integrated	Performance	Primitives	(IPP)	libraries	are	permitted	if	they	are	delivered	as	a	part	of	the	developer-240	
supplied	library	package.	It	is	the	provider’s	responsibility	to	establish	proper	licensing	of	all	libraries.		The	use	of	IPP	241	
libraries	shall	not	prevent	running	on	CPUs	that	do	not	support	IPP.		Please	take	note	that	some	IPP	functions	are	242	
multithreaded	and	threaded	implementations	may	complicate	comparative	timing.	243	

Table	4	–	Implementation	library	filename	convention	244	

Form	 libTRAIT2016_provider_class_sequence.ending	
Underscore	
delimited	parts	of	
the	filename	

libTRAIT2016	 provider	 class	 sequence	 ending	

Description	 First	part	of	the	
name,	required	to	
be	this.	

Single	word	name	of	
the	main	provider	
EXAMPLE:		Enron	

Function	classes	
supported	in	Table	
2.	
EXAMPLE:	C	

A	two	digit	decimal	
identifier	to	start	at	00	
and	increment	by	1	
every	time	a	library	is	
sent	to	NIST.		EXAMPLE:	
07	

.so	

Example	 libTRAIT2016_Enron_C_07.so	
	245	

NIST	will	report	the	size	of	the	supplied	libraries.	246	

1.16.2. Configuration	and	developer-defined	data	247	

The	implementation	under	test	may	be	supplied	with	configuration	files	and	supporting	data	files.		The	total	size	of	the	248	
SDK,	that	is	all	libraries,	include	files,	data	files	and	initialization	files	shall	be	less	than	or	equal	to	1	073	741	824	bytes	=	249	
10243	bytes.	250	

NIST	will	report	the	size	of	the	supplied	configuration	files.	251	

1.16.3. Submission	folder	hierarchy	252	

Participant	submissions	should	contain	the	following	folders	at	the	top	level	253	
• lib/	-	contains	all	participant-supplied	software	libraries	254	
• config/	-	contains	all	configuration	and	developer-defined	data	255	
• doc/	-	contains	any	participant-provided	documentation	regarding	the	submission	256	

1.16.4. Installation	and	Usage	257	
The	SDK	must	install	easily	(i.e.,	one	installation	step	with	no	participant	interaction	required)	to	be	tested	and	shall	be	258	
executable	on	any	number	of	machines	without	requiring	additional	machine-specific	license	control	procedures	or	259	
activation.	260	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	11	of	21	
	

The	SDK	shall	neither	implement	nor	enforce	any	usage	controls	or	limits	based	on	licenses,	number	of	executions,	261	
presence	of	temporary	files,	etc.		The	SDKs	shall	remain	operable	with	no	expiration	date.	262	

Hardware	(e.g.,	USB)	activation	dongles	are	not	acceptable.	263	

1.16.5. Documentation	264	

Participants	may	provide	documentation	of	the	SDK	and	detail	any	additional	functionality	or	behavior	beyond	that	265	
specified	here.		The	documentation	might	include	developer-defined	error	or	warning	return	codes.		The	documentation	266	
shall	not	include	any	intellectual	property.	267	

1.17. Runtime	behavior	268	

1.17.1. Interactive	behavior	269	

The	implementation	will	be	tested	in	non-interactive	“batch”	mode	(i.e.,	without	terminal	support).	Thus,	the	submitted	270	
library	shall:	271	

− Not	use	any	interactive	functions	such	as	graphical	user	interface	(GUI)	calls	or	any	other	calls	which	require	272	
terminal	interaction,	e.g.,	reads	from	“standard	input”.	273	

− Run	quietly,	i.e.,	it	should	not	write	messages	to	"standard	error"	and	shall	not	write	to	“standard	output”.	274	

− If	requested	by	NIST	for	debugging,	include	a	logging	facility	in	which	debugging	messages	are	written	to	a	log	file	275	
whose	name	includes	the	provider	and	library	identifiers	and	the	process	PID.	276	

1.17.2. Exception	Handling	277	

The	application	should	include	error/exception	handling	so	that	in	the	case	of	a	fatal	error,	the	return	code	is	still	278	
provided	to	the	calling	application.	279	

1.17.3. External	communication	280	

Processes	running	on	NIST	hosts	shall	not	side-effect	the	runtime	environment	in	any	manner,	except	for	memory	281	
allocation	and	release.		Implementations	shall	not	write	any	data	to	an	external	resource	(e.g.,	server,	file,	connection,	or	282	
other	process),	nor	read	from	such.	If	detected,	NIST	will	take	appropriate	steps,	including	but	not	limited	to,	cessation	of	283	
evaluation	of	all	implementations	from	the	supplier,	notification	to	the	provider,	and	documentation	of	the	activity	in	284	
published	reports.	285	

1.17.4. Stateless	behavior	286	

All	components	in	this	test	shall	be	stateless,	except	as	noted.			This	applies	to	text	detection,	recognition	and	287	
transcription.		Thus,	all	functions	should	give	identical	output,	for	a	given	input,	independent	of	the	runtime	history.			NIST	288	
will	institute	appropriate	tests	to	detect	stateful	behavior.	If	detected,	NIST	will	take	appropriate	steps,	including	but	not	289	
limited	to,	cessation	of	evaluation	of	all	implementations	from	the	supplier,	notification	to	the	provider,	and	290	
documentation	of	the	activity	in	published	reports.		291	

1.18. Threaded	computations	292	

All	implementations	should	run	without	threads,	or	with	exactly	one	single	process.	This	allows	NIST	to	parallelize	the	test	293	
by	dividing	the	workload	across	multiple	cores	and	multiple	machines.		The	implementation	shall	be	tolerant	of	NIST	294	
running	N	>	2	processes	concurrently.		NIST's	calling	applications	are	single-threaded.	295	

1.19. Time	limits	296	

Given	a	12	megapixel	input	image,	the	text	detection	and	recognition	software	should	execute	in	less	than	10	seconds.	297	

	298	

	 	299	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	12	of	21	
	

2. Data	structures	supporting	the	API	300	

2.1. Namespace	301	

All	data	structures	and	API	interfaces/function	calls	will	be	declared	in	the	TRAIT2016	namespace.	302	

2.2. Overview	303	

This	section	describes	separate	APIs	for	the	core	text	detection/recognition	applications	described	in	section	1.9.		All	304	
SDK's	submitted	to	TRAIT	2016	shall	implement	the	functions	required	by	the	rules	for	participation	listed	before	Table	2.			305	

2.3. Requirement	306	

TRAIT	2016	participants	shall	submit	an	SDK,	which	implements	the	relevant	C++	functions	(per	class)	as	specified	in	Table	307	
2.		C++	was	chosen	in	order	to	make	use	of	some	object-oriented	features.	308	

2.4. File	formats	and	data	structures	309	

2.4.1. Overview	310	

In	this	text	detection	and	recognition	test,	the	input	data	is	a	still	image.	311	

2.4.2. Data	structures	for	encapsulating	a	single	image	312	
An	image	is	provided	to	the	algorithm	using	the	data	structure	of	Table	5.	313	

Table	5	–	Struct	representing	a	single	image	314	

	 C++	code	fragment	 Remarks	
1. struct Image 	
2. {

	

3. uint16_t image_width; Number	of	pixels	horizontally	
4. uint16_t image_height; Number	of	pixels	vertically	
5. uint8_t image_depth; Number	of	bits	per	pixel.	Legal	values	are	8	and	24.	
6. uint8_t *data; Pointer	to	raster	scanned	data.	Either	RGB	color	or	intensity.	

If	image_depth	==	24	this	points	to	3WH	bytes		RGBRGBRGB...	
If	image_depth	==		8	this	points	to		WH	bytes		IIIIIII	

7. }; 	
	315	

2.4.3. Data	structures	for	reporting	detected	text	316	
Implementations	should	report	locations	of	text	in	each	image	using	the	structure	of	the	table	below.	317	

318	
Table	6	–	Structure	representing	a	point	in	2D	coordinates	319	

	 C++	code	fragment		 Remarks	
1. struct Coordinate 	
2. { 	
3. uint16_t x; x-value	
4. uint16_t y; y-value	
5. }; 	

	320	

Table	7	–	Location	Types	321	

	 Location	Type	as	C++	enumeration	 Meaning	
 enum class LocationType { 	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	13	of	21	
	

1. /* Input only */
 Line=1,

Coordinates	of	line	segments	drawn	through	the	
centroids	of	the	text.		There	will	be	N=2	points	with	
coordinates	giving	the	endpoints.		This	type	is	used	for	
input	to	the	implementation	only,	i.e.	Class	B	(Image-to-
text	with	provided	location).	

2. /* Output only */
 Polygon=2

In	reading,	clockwise	order,	the	coordinates	of	a	closed	
polygon	drawn	around	the	line	of	text,	where	the	
coordinates	of	the	first	and	last	points	in	the	polygon	are	
the	same.		This	type	is	used	for	output	from	the	
implementation	only,	i.e.	Class	A	(Image-to-location)	and	
Class	C	(Image-to-text-and-location).	

3. }; 	

	322	

Table	8	–	Data	structure	for	location	information	in	an	image	323	

	 C++	code	fragment		 Remarks	
1. struct Location 	
2. { 	
3. std::vector<Coordinate> points; Coordinates	representing	the	location	of	the	text	
4. LocationType type; For	Class	B	(Image-to-text	with	provided	location),	this	will	provide	

the	location	information	for	text	in	the	form	of	a	line	through	the	
centroids	of	the	text.	
	
For	Class	A	(Image-to-location)	and	C	(Image-to-text-and-location),	
the	locations	returned	by	the	implementation	MUST	be	a	Polygon.	

5. }; 	

2.4.4. Data	structure	for	return	value	of	API	function	calls	324	

Table	9	–	Enumeration	of	return	codes	for	API	function	calls	325	

	 Return	code	as	C++	enumeration	 Meaning	
 enum class ReturnCode { 	
1. Success=0, Success	
2. ConfigError=1, Error	reading	configuration	files	
3. RefuseInput=2, Elective	refusal	to	process	the	input	
4. VendorError=3 Vendor-defined	error	
5. }; 	

Table	10	–	ReturnStatus	structure	326	

	 C++	code	fragment	 Meaning	
 struct ReturnStatus { 	
1. TRAIT2016::ReturnCode code; Return	Code	
2. std::string info; Optional	information	string	
3. // constructors 	
4. }; 	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	14	of	21	
	

3. API	Specification	327	

3.1. Image-to-location		328	

3.1.1. Overview	329	

This	section	defines	an	API	for	algorithms	that	can	perform	solely	text	detection.		This	does	not	reflect	an	operational	use-330	
case	per	se,	but	is	included	in	this	evaluation	to	identify	capable	algorithms	and	to	support,	in-principle,	good	detection	331	
algorithms	that	have	poor	recognition	capability.	332	

3.1.2. API	333	

3.1.2.1. Interface	334	
The	Class	A	software	under	test	must	implement	the	interface	ImgToLocationInterface	by	subclassing	this	class	335	
and	implementing	each	method	specified	therein.	336	

	 C++	code	fragment		 Remarks	
1. class ImgToLocationInterface 	
2. {

public:
	

3. virtual ReturnStatus initialize_text_detector(
 const std::string &configuration_location);

	

4. virtual ReturnStatus detect_text_in_still(
 const Image &image,
 std::vector<Location> &textLocations) = 0;

	

5.	 virtual void set_gpu(uint8_t gpuNum) = 0; 	
6.	 static ClassAImplPtr getImplementation(); Factory	method	to	return	a	managed	pointer	

to	the	ImgToLocationInterface	
object.		This	function	is	implemented	by	the	
submitted	library	and	must	return	a	
managed	pointer	to	the	
ImgToLocationInterface	object.	

7. }; 	
	337	
There	is	one	class	(static)	method	declared	in	ImgToLocationInterface,	getImplementation()	which	must	338	
also	be	implemented	by	the	SDK.	This	method	returns	a	shared	pointer	to	the	object	of	the	interface	type,	an	instantiation	339	
of	the	implementation	class.	A	typical	implementation	of	this	method	is	also	shown	below	as	an	example.	340	
	341	
	 C++	code	fragment		 Remarks	
 #include "trait2016NullImplClassA.h"

using namespace TRAIT2016;

NullImplClassA::NullImplClassA() { }

NullImplClassA::~NullImplClassA() { }

ClassAImplPtr
ImgToLocationInterface::getImplementation()
{
 NullImplClassA *p = new NullImplClassA();
 ClassAImplPtr ip(p);
 return (ip);
}

// Other implemented functions

	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	15	of	21	
	

3.1.2.2. Initialization	342	
Before	any	text	detection	calls	are	made,	the	NIST	test	harness	will	make	a	call	to	the	initialization	of	the	function	in	Table	343	
11.	344	

Table	11	–	SDK	initialization		345	

Prototype	 ReturnStatus	initialize_text_detector(
const	std::string	&configuration_location);	 Input	

Description	
	

This	function	initializes	the	SDK	under	test.		It	will	be	called	by	the	NIST	application	before	any	call	to	
detect_text_in_still()	is	made.	

Input	Parameters	 configuration_location	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.		The	name	of	this	directory	is	assigned	by	NIST.		It	is	not	hardwired	
by	the	provider.		The	names	of	the	files	in	this	directory	are	hardwired	in	the	SDK	and	
are	unrestricted.	

Return	Code	
	

Success	 Success	
ConfigError	 Vendor	provided	configuration	files	are	not	readable	in	the	indicated	location.	
VendorError	 Vendor-defined	failure	

3.1.2.3. GPU	Index	Specification	346	
For	implementations	using	GPUs,	the	function	of	Table	12	specifies	a	sequential	index	for	which	GPU	device	to	execute	347	
on.		This	enables	the	test	software	to	orchestrate	load	balancing	across	multiple	GPUs.	348	

Table	12	–	GPU	index	specification	349	

Prototypes	 void	set_gpu	(
uint8_t	gpuNum);	 Input	

Description	 This	function	sets	the	GPU	device	number	to	be	used	by	all	subsequent	implementation	function	calls.		gpuNum	is	
a	zero-based	sequence	value	of	which	GPU	device	to	use.		0	would	mean	the	first	detected	GPU,	1	would	be	the	
second	GPU,	etc.		If	the	implementation	does	not	use	GPUs,	then	this	function	call	should	simply	do	nothing.	

Input	
Parameters	

gpuNum	 Index	number	representing	which	GPU	to	use.	
	 	

3.1.2.4. Text	detection	350	
The	text	detection	functions	of	Table	13	accept	input	imagery	and	report	the	location(s)	of	zero	or	more	lines	of	text,	in	351	
the	form	of	a	closed	polygon.		NIST	may	evaluate	on	images	with	no	text	in	them.	352	

Table	13	–	Text	detection	353	

Prototypes	 ReturnStatus	detect_text_in_still	(
const	Image	&image,	 Input	
std::vector<Location>	&textLocations);	 Output	

Description	 This	function	takes,	respectively,	a	still	image	and	returns	the	locations	of	lines	of	text,	if	any,	in	the	form	of	closed	
polygon(s).		The	output	textLocations	vector	will	initially	be	empty.		It	is	up	to	the	implementation	to	
populate	the	vector	and	ensure	textStrings.size()==images.size.		

Input	
Parameters	

Image	 A	Table	5	structure	
	 	

Output	
Parameters	

textLocations	 A	vector	of	Table	8	structure	

Return	Code	 Success	 Success	
RefuseInput	 Elective	refusal	to	process	the	input	–	e.g.,	because	quality	is	too	poor	
VendorError	 Vendor-defined	failure.		Failure	codes	must	be	documented	and	communicated	to	

NIST	with	the	submission	of	the	implementation	under	test.	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	16	of	21	
	

3.2. Image-to-text	with	provided	location	information	354	

3.2.1. Overview	355	
This	section	defines	an	API	for	algorithms	that	perform	recognition	given	text	location	in	an	image.		This	is	not	a	primary	356	
operational	use-case,	but	is	included	for	NIST	to	evaluate	the	relative	difficulties	of	detection	vs.	recognition.	357	

3.2.2. API	358	

3.2.2.1. Interface	359	
The	Class	B	software	under	test	must	implement	the	interface	ImgToTextInterface	by	subclassing	this	class	and	360	
implementing	each	method	specified	therein.		See		361	

	 C++	code	fragment		 Remarks	
1. class ImgToTextInterface 	
2. {

public:
	

3. virtual ReturnStatus initialize_text_recognizer(
 const std::string &configuration_location);

	

4. virtual ReturnStatus recognize_text_in_still(
 const Image &image,
 const std::vector<Location> &textLocations,
 std::vector<std::string> &textStrings) = 0;

	

5.	 virtual void set_gpu(uint8_t gpuNum) = 0; 	
6.	 static ClassBImplPtr getImplementation(); Factory	method	to	return	a	managed	pointer	

to	the	ImgToTextInterface	object.		
This	function	is	implemented	by	the	
submitted	library	and	must	return	a	
managed	pointer	to	the	
ImgToTextInterface	object.	

7. }; 	
	362	
There	is	one	class	(static)	method	declared	in	ImgToTextInterface,	getImplementation()	which	must	also	be	363	
implemented	by	the	SDK.	This	method	returns	a	shared	pointer	to	the	object	of	the	interface	type,	an	instantiation	of	the	364	
implementation	class.	A	typical	implementation	of	this	method	is	also	shown	below	as	an	example.	365	
	366	
	 C++	code	fragment		 Remarks	
 #include "trait2016NullImplClassB.h"

using namespace TRAIT2016;

NullImplClassB::NullImplClassB() { }

NullImplClassB::~NullImplClassB() { }

ClassBImplPtr
ImgToTextInterface::getImplementation()
{
 NullImplClassB *p = new NullImplClassB();
 ClassBImplPtr ip(p);
 return (ip);
}

// Other implemented functions

	

	367	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	17	of	21	
	

3.2.2.2. Initialization	368	
Before	any	text	recognition	calls	are	made,	the	NIST	test	harness	will	make	a	call	to	the	initialization	of	the	function	in	369	
Table	14.	370	

Table	14	–	SDK	initialization		371	

Prototype	 ReturnStatus	initialize_text_recognizer(
const	std::string	&configuration_location);	 Input	

Description	
	

This	function	initializes	the	SDK	under	test.		It	will	be	called	by	the	NIST	application	before	any	call	to	
recognize_text_in_still().	

Input	Parameters	 configuration_location	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.		The	name	of	this	directory	is	assigned	by	NIST.		It	is	not	hardwired	
by	the	provider.		The	names	of	the	files	in	this	directory	are	hardwired	in	the	SDK	and	
are	unrestricted.	

Return	Code	 Success	 Success	
ConfigError	 Vendor	provided	configuration	files	are	not	readable	in	the	indicated	location.	
Other	 Vendor-defined	failure	

3.2.2.3. GPU	Index	Specification	372	
For	implementations	using	GPUs,	the	function	of	Table	15	specifies	a	sequential	index	for	which	GPU	device	to	execute	373	
on.		This	enables	the	test	software	to	orchestrate	load	balancing	across	multiple	GPUs.	374	

Table	15	–	GPU	index	specification	375	

Prototypes	 void	set_gpu	(
uint8_t	gpuNum);	 Input	

Description	 This	function	sets	the	GPU	device	number	to	be	used	by	all	subsequent	implementation	function	calls.		gpuNum	is	
a	zero-based	sequence	value	of	which	GPU	device	to	use.		0	would	mean	the	first	detected	GPU,	1	would	be	the	
second	GPU,	etc.		If	the	implementation	does	not	use	GPUs,	then	this	function	call	should	simply	do	nothing.	

Input	
Parameters	

gpuNum	 Index	number	representing	which	GPU	to	use.	
	 	

3.2.2.4. Text	recognition	with	provided	location	information	376	
The	text	recognition	functions	of	Table	16	accept	input	imagery	and	locations	of	text	in	the	image	and	report	zero	or	more	377	
lines	of	recognized	text.		NIST	may	provide	locations	where	no	text	exists,	and	the	implementation	should	handle	that.	378	

Table	16	–	Text	recognition	379	

Prototypes	 ReturnStatus	recognize_text_in_still(
	 const	Image	&image,	 Input	

const	std::vector<Location>	&textLocations,	 Input	
std::vector<std::string>	&textStrings);	 Output	

Description	 This	function	takes	a	still	images	and	K	>=	1	locations	of	text	and	returns	K	(possibly	empty)	strings	of	text	for	the	
image.		The	output	vector	will	initially	be	empty	and	it	is	up	to	the	implementation	to	ensure	that	
textStrings.size()==images.size().		textStrings[i]	should	correspond	to	the	location	
information	from	textLocations[i].		If	no	text	is	recognized	for	a	particular	provided	location,	the	
implementation	shall	populate	textStrings[i]with	an	empty	string	(i.e.,	“”).		The	provided	location	
information	will	be	in	the	form	of	a	line,	that	is,	textLocations[i].type=Line.		

Input	Parameters	 image	 A	Table	5	structure	
	 textLocations	 A	vector	of	Table	8	structure	
Output	Parameters	 textStrings	 A	vector	of	std::string	
Return	Code		 Success	 Success	
	 RefuseInput	 Elective	refusal	to	process	the	input	–	e.g.	because	quality	is	too	poor	

VendorError	 Vendor-defined	failure.		Failure	codes	must	be	documented	and	
communicated	to	NIST	with	the	submission	of	the	implementation	under	test.	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	18	of	21	
	

3.3. Image-to-text-and-location	380	

3.3.1. Overview	381	
This	section	defines	an	API	for	algorithms	that	can	perform	text	recognition	in	stills.		This	reflects	the	primary	operational	382	
use-case.	383	

3.3.2. API	384	

3.3.2.1. Interface	385	
The	Class	C	software	under	test	must	implement	the	interface	ImgToTextAndLocInterface	by	subclassing	this	class	386	
and	implementing	each	method	specified	therein.		See		387	

	 C++	code	fragment		 Remarks	
1. class ImgToTextAndLocInterface 	
2. {

public:
	

3. virtual ReturnStatus initialize_text_processor(
 const std::string &configuration_location,
 bool &useGPU);

	

4. virtual ReturnStatus process_text_in_still(
 const Image &image,
 std::vector<Location> &textLocations,
 std::vector<std::string> &textStrings) = 0;

	

5.	 virtual void set_gpu(uint8_t gpuNum) = 0; 	
6.	 static ClassCImplPtr getImplementation(); Factory	method	to	return	a	managed	pointer	

to	the	ImgToTextAndLocInterface	
object.		This	function	is	implemented	by	the	
submitted	library	and	must	return	a	
managed	pointer	to	the	
ImgToTextAndLocInterface	object.	

7. }; 	
	388	
There	is	one	class	(static)	method	declared	in	ImgToTextAndLocInterface,	getImplementation()	which	389	
must	also	be	implemented	by	the	SDK.	This	method	returns	a	shared	pointer	to	the	object	of	the	interface	type,	an	390	
instantiation	of	the	implementation	class.	A	typical	implementation	of	this	method	is	also	shown	below	as	an	example.	391	
	392	
	 C++	code	fragment		 Remarks	
 #include "trait2016NullImplClassC.h"

using namespace TRAIT2016;

NullImplClassC::NullImplClassC() { }

NullImplClassC::~NullImplClassC() { }

ClassCImplPtr
ImgToTextAndLocInterface::getImplementation()
{
 NullImplClassC *p = new NullImplClassC();
 ClassCImplPtr ip(p);
 return (ip);
}

// Other implemented functions

	

	393	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	19	of	21	
	

3.3.2.2. Initialization	394	
Before	any	text	recognition/processing	calls	are	made,	the	NIST	test	harness	will	make	a	call	to	the	initialization	of	the	395	
function	in	Table	14.	396	

Table	17	–	SDK	initialization		397	

Prototype	 ReturnStatus	initialize_text_processor(
const	std::string	&configuration_location);	 Input	

Description	
	

This	function	initializes	the	SDK	under	test.		It	will	be	called	by	the	NIST	application	before	any	call	to	
process_text_in_still()	is	made.	

Input	Parameters	 configuration_location	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.		The	name	of	this	directory	is	assigned	by	NIST.		It	is	not	hardwired	
by	the	provider.		The	names	of	the	files	in	this	directory	are	hardwired	in	the	SDK	and	
are	unrestricted.	

Return	Code		 Success	 Success	
ConfigError	 Vendor	provided	configuration	files	are	not	readable	in	the	indicated	location.	
VendorError	 Vendor-defined	failure	

3.3.2.3. GPU	Index	Specification	398	
For	implementations	using	GPUs,	the	function	of	Table	18	specifies	a	sequential	index	for	which	GPU	device	to	execute	399	
on.		This	enables	the	test	software	to	orchestrate	load	balancing	across	multiple	GPUs.	400	

Table	18	–	GPU	index	specification	401	

Prototypes	 void	set_gpu	(
uint8_t	gpuNum);	 Input	

Description	 This	function	sets	the	GPU	device	number	to	be	used	by	all	subsequent	implementation	function	calls.		gpuNum	is	
a	zero-based	sequence	value	of	which	GPU	device	to	use.		0	would	mean	the	first	detected	GPU,	1	would	be	the	
second	GPU,	etc.		If	the	implementation	does	not	use	GPUs,	then	this	function	call	should	simply	do	nothing.	

Input	
Parameters	

gpuNum	 Index	number	representing	which	GPU	to	use.	
	 	

3.3.2.4. Text	processing	without	location	information	402	
The	text	processing	functions	of	Table	19	accept	input	imagery	and	report	zero	or	more	lines	of	text.	403	

Table	19	–	Text	processing	404	

Prototypes	 ReturnStatus	process_text_in_still(
const	Image	&images,	 Input	
std::vector<Location>	&textLocations,	
std::vector<std::string>	&textStrings);	

Output	
Output	

Description	 This	function	takes	a	still	image	and	returns	strings	of	text	and	their	corresponding	locations	found	in	the	image.		
textStrings[i]	shall	correspond	to	the	location(s)	for	text	in	textLocations[i].		The	output	vectors	will	
initially	be	empty	and	it	is	up	to	the	implementation	to	ensure	that	
textLocations.size()==textStrings.size().		The	implementation	shall	report	the	location	of	lines	of	
text	in	the	form	of	a	closed	polygon,	that	is,	textLocations[].type=Polygon.	

Input	
Parameters	

image	 A	Table	5	structure	

Output	
Parameters	

textLocations	 A	vector	of	Table	8	structure	

	 textStrings	 A	vector	of	std::string	
Return	Code		 Success	 Success	

RefuseInput	 Elective	refusal	to	process	the	input	–	e.g.	because	quality	is	too	poor	
VendorError	 Vendor-defined	failure.		Failure	codes	must	be	documented	and	communicated	to	NIST	with	

the	submission	of	the	implementation	under	test.	
	405	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	20	of	21	
	

Annex A 406	

Submission of Implementations to the TRAIT 2016 407	

A.1 Submission of implementations to NIST 408	

NIST	requires	that	all	software,	data	and	configuration	files	submitted	by	the	participants	be	signed	and	encrypted.		409	
Signing	is	done	with	the	participant's	private	key,	and	encryption	is	done	with	the	NIST	public	key.		The	detailed	410	
commands	for	signing	and	encrypting	are	given	here:	http://www.nist.gov/itl/iad/ig/encrypt.cfm	411	

NIST	will	validate	all	submitted	materials	using	the	participant's	public	key,	and	the	authenticity	of	that	key	will	be	verified	412	
using	the	key	fingerprint.		This	fingerprint	must	be	submitted	to	NIST	by	writing	it	on	the	signed	participation	agreement.	413	

By	encrypting	the	submissions,	we	ensure	privacy;	by	signing	the	submissions,	we	ensure	authenticity	(the	software	414	
actually	belongs	to	the	submitter).		NIST	will	reject	any	submission	that	is	not	signed	and	encrypted.		NIST	accepts	no	415	
responsibility	for	anything	that	is	transmitted	to	NIST	that	is	not	signed	and	encrypted	with	the	NIST	public	key.	416	

A.2 How to participate 417	

Those	wishing	to	participate	in	TRAIT	2016	testing	must	do	all	of	the	following,	on	the	schedule	listed	in	this	document.	418	

― IMPORTANT:	Follow	the	instructions	for	cryptographic	protection	of	your	SDK	and	data	here.	419	
http://www.nist.gov/itl/iad/ig/encrypt.cfm				420	

― Send	a	signed	and	fully	completed	copy	of	the	Application	to	Participate	in	the	Text	Recognition	Algorithm	421	
Independent	Test	(TRAIT)	2016.	This	is	available	at	http://www.nist.gov/itl/iad/ig/trait-2016.cfm.		This	must	identify,	422	
and	include	signatures	from,	the	Responsible	Parties	as	defined	in	the	application.	The	properly	signed	TRAIT	2016	423	
Application	to	Participate	shall	be	sent	to	NIST	as	a	PDF.		424	

― Provide	an	SDK	(Software	Development	Kit)	library	which	complies	with	the	API	(Application	Programmer	Interface)	425	
specified	in	this	document.	426	

• Encrypted	data	and	SDKs	below	20MB	can	be	emailed	to	NIST	at	trait2016@nist.gov.		427	

• Encrypted	data	and	SDKS	above	20MB	shall	be	428	

EITHER	429	

§ Split	into	sections	AFTER	the	encryption	step.		Use	the	unix	"split"	commands	to	make	9MB	chunks,	430	
and	then	rename	to	include	the	filename	extension	need	for	passage	through	the	NIST	firewall.	431	

§ you% split –a 3 –d –b 9000000 libTRAIT2016_enron_A_02.tgz.gpg 432	
§ you% ls -1 x??? | xargs –iQ mv Q libTRAIT2016_enron_A_02_Q.tgz.gpg 433	

§ Email	each	part	in	a	separate	email.	Upon	receipt	NIST	will 434	
§ nist% cat TRAIT2016_enron_A02_*.tgz.gpg > libTRAIT2016_enron_A_02.tgz.gpg 435	

OR	436	

§ Made	available	as	a	file.zip.gpg	or	file.zip.asc	download	from	a	generic	http	webserver1,	437	

OR	438	

§ Mailed	as	a	file.zip.gpg	or	file.zip.asc	on	CD	/	DVD	to	NIST	at	this	address:	439	

TRAIT	2016	Test	Liaison	(A203)	
100	Bureau	Drive	
A203/Tech225/Stop	8940	
NIST	
Gaithersburg,	MD	20899-8940	
USA	

In	cases	where	a	courier	needs	a	phone	number,	please	
use	NIST	shipping	and	handling	on:	301	--	975	--	6296.	
	

																																																																				
1	NIST	will	not	register,	or	establish	any	kind	of	membership,	on	the	provided	website.	

TRAIT	2016	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	21	of	21	
	

A.3 Implementation validation 440	

Registered	Participants	will	be	provided	with	a	small	validation	dataset	and	test	program	available	on	the	website.		441	

http://www.nist.gov/itl/iad/ig/trait-2016.cfm	shortly	after	the	final	evaluation	plan	is	released.	442	

The	validation	test	programs	shall	be	compiled	by	the	provider.		The	output	of	these	programs	shall	be	submitted	to	NIST.	443	

Prior	to	submission	of	the	SDK	and	validation	data,	the	Participant	must	verify	that	their	software	executes	on	the	444	
validation	images,	and	produces	correct	similarity	scores	and	templates.	445	

Software	submitted	shall	implement	the	TRAIT	2016	API	Specification	as	detailed	in	the	body	of	this	document.	446	

Upon	receipt	of	the	SDK	and	validation	output,	NIST	will	attempt	to	reproduce	the	same	output	by	executing	the	SDK	on	447	
the	validation	imagery,	using	a	NIST	computer.		In	the	event	of	disagreement	in	the	output,	or	other	difficulties,	the	448	
Participant	will	be	notified.	449	

